Perturbation Theory and Discrete Hamiltonian Dynamics

نویسندگان

  • K. Khanin
  • DIOGO A. GOMES
  • CLAUDIA VALLS
  • D. Gomes
  • C. Valls
چکیده

In this paper we discuss a weak version of KAM theory for symplectic maps which arise from the discretization of the minimal action principle. These maps have certain invariant sets, the Mather sets, which are the generalization of KAM tori in the non-differentiable case. These sets support invariant measures, the Mather measures, which are action minimizing measures. We generalize viscosity solution methods to study discrete systems. In particular, we show that, under non-resonance conditions, the Mather sets can be approximated uniformly, up to any arbitrary order, by finite perturbative expansions. We also present new results concerning the approximation of Mather measures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Calculus of Variation for Homographic Configurations in Celestial Mechanics

We provide in this paper the discrete equations of motion for the newtonian n-body problem deduced from the quantum calculus of variations (Q.C.V.) developed in [3, 4, 7, 8]. These equations are brought into the usual lagrangian and hamiltonian formulations of the dynamics and yield sampled functional equations involving generalized scale derivatives. We investigate especially homographic solut...

متن کامل

Diffusion of Power in Randomly Perturbed Hamiltonian Partial Differential Equations

Abstract We study the evolution of the energy (mode-power) distribution for a class of randomly perturbed Hamiltonian partial differential equations and derive master equations for the dynamics of the expected power in the discrete modes. In the case where the unperturbed dynamics has only discrete frequencies (finitely or infinitely many) the mode-power distribution is governed by an equation ...

متن کامل

بررسی دینامیک کوانتومی مدارهای الکتریکی مزوسکوپی با بار گسسته

  The quantum dynamics of a charged particle in an infinite chain of single-state quantum wells, in tight-binding approximation and under the action of an arbitrary time-dependent external field is investigated. The connection between the Hamiltonian description of this model and the Hamiltonian of a discrete-charge mesoscopic quantum circuit is elucidated. Based on this connection, the persist...

متن کامل

The interaction of light and matter as we have described from Fermi’s Golden Rule gives the rates of transitions between discrete eigenstates of the material Hamiltonian H0. The frequency

The interaction of light and matter as we have described from Fermi’s Golden Rule gives the rates of transitions between discrete eigenstates of the material Hamiltonian H0. The frequency dependence to the transition rate is proportional to an absorption spectrum. We also know that interaction with the light field prepares superpositions of the eigenstates of H0, and this leads to the periodic ...

متن کامل

Persistence of Homoclinic Orbits in a Discretized NLS Equation with Hamiltonian Perturbation

We study the dynamics of a Discretized NLS (DNLS) equation with Hamiltonian perturbation on the periodic domain. The unperturbed system consists of a inte-grable DNLS equation for which the corresponding Lax pair is known. We prove the persistence of homoclinic orbits for this system and derive a formula for the distance between the invariant manifolds of a torus of unstable equilibria for a cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004